Human mitochondrial ferritin improves respiratory function in yeast mutants deficient in iron–sulfur cluster biogenesis, but is not a functional homologue of yeast frataxin

نویسندگان

  • Robert Sutak
  • Alexandra Seguin
  • Ricardo Garcia-Serres
  • Jean-Louis Oddou
  • Andrew Dancis
  • Jan Tachezy
  • Jean-Marc Latour
  • Jean-Michel Camadro
  • Emmanuel Lesuisse
چکیده

We overexpressed human mitochondrial ferritin in frataxin-deficient yeast cells (Δyfh1), but also in another mutant affected in [Fe-S] assembly (Δggc1). Ferritin was correctly processed and expressed in the mitochondria of these cells, but the fraction of total mitochondrial iron bound to ferritin was very low, and most of the iron remained in the form of insoluble particles of ferric phosphate in these mitochondria, as evidenced by gel filtration analysis of the mitochondrial matrix (fast protein liquid chromatography [FPLC]) and by Mössbauer spectroscopy. Mutant cells in which ferritin was overexpressed still accumulated iron in the mitochondria and remained deficient in [Fe-S] assembly, suggesting that human mitochondrial ferritin is not a functional homologue of yeast frataxin. However, the respiratory function was improved in these mutants, which correlates with an improvement of cytochrome and heme synthesis. Overexpression of mitochondrial ferritin in [Fe-S] mutants resulted in the appearance of a small pool of high-spin ferrous iron in the mitochondria, which was probably responsible for the improvement of heme synthesis and of the respiratory function in these mutants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The expression of human mitochondrial ferritin rescues respiratory function in frataxin-deficient yeast.

Mitochondrial ferritin (MtF) is structurally and functionally similar to the cytosolic ferritins, molecules designed to store and detoxify cellular iron. MtF expression in human and mouse is restricted to the testis and few tissues, and it is abundant in the erythroblasts of patients with sideroblastic anemia, where it is thought to protect the mitochondria from the damage caused by iron loadin...

متن کامل

Ddh232 2279..2288

Mitochondrial ferritin (MtF) is structurally and functionally similar to the cytosolic ferritins, molecules designed to store and detoxify cellular iron. MtF expression in human and mouse is restricted to the testis and few tissues, and it is abundant in the erythroblasts of patients with sideroblastic anemia, where it is thought to protect the mitochondria from the damage caused by iron loadin...

متن کامل

Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo.

The neurodegenerative disease Friedreich's ataxia is caused by reduced levels of frataxin, a mitochondrial matrix protein. The in vivo role of frataxin is under debate. Frataxin, as well as its yeast homologue Yfh1, binds multiple iron atoms as an oligomer and has been proposed to function as a crucial iron-storage protein. We identified a mutant Yfh1 defective in iron-induced oligomerization. ...

متن کامل

Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia.

Friedreich ataxia (FRDA) is an autosomal recessive degenerative disease caused by a deficiency of frataxin, a conserved mitochondrial protein of unknown function. Mitochondrial iron accumulation, loss of iron-sulfur cluster-containing enzymes and increased oxidative damage occur in yeast and mouse frataxin-depleted mutants as well as tissues and cell lines from FRDA patients, suggesting that fr...

متن کامل

Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones.

The neurodegenerative disorder Friedreich's ataxia (FRDA) is caused by mutations in frataxin, a mitochondrial protein whose function remains controversial. Using co-immunoprecipitation and mass spectrometry we identified multiple interactors of mitochondrial frataxin in mammalian cells. One interactor was mortalin/GRP75, a homolog of the yeast ssq1 chaperone that integrates iron-sulfur clusters...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2012